Драйвер для светодиодов

Содержание

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.
LED лампа выглядит вот так:
Рис 1. Внешний вид разобранной LED лампы
Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.
Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?
Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.
Вернемся к проблемам драйвера.
Вот так выглядит плата драйвера:
Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа
И с обратной стороны:
Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей
Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.
В МТ7930 встроены защиты:
• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла
Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂
Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная
Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.
Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!
Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.
Рис 5. Фото разделительного трансформатора
Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.
Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.
Почему же срабатывает защита и по какому именно параметру?
Первое предположение
Срабатывание защиты по превышению выходного напряжения?
Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!
Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…
Дал схеме поработать часок – все ОК.
А если дать ей остыть? После 20 минут в выключенном состоянии не работает.
Очень хорошо, видимо дело в нагреве какого-то элемента?
Но какого? И какие же параметры элемента могут уплывать?
В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?
Второе предположение
Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.
Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?
Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.
К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.
Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.
К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.
Третье предположение
Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.
По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.
Прогрев микросхемы паяльником ничего не давал.
И очень смущало малое время нагрева… что там может за 15 секунд измениться?
В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.
Что же еще может мешать переходу от режима запуска в рабочий режим?!!!
От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.
И тут наступило счастье. Заработало!
Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.
Вот он, виновник проблемы:
Рис 6. Конденсатор с неправильной емкостью
Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.
Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.
Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.
Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.
Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:
• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.
Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Правила подбора драйвера светодиодной лампы — виды, назначение подключение

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Блок: 1/12 | Кол-во символов: 340

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Электронные драйверы для LED ламп

Драйвер для светодиодной лампы

Вообще, по хорошему, любой электронный драйвер должен иметь ключевой транзистор, дабы разгрузить микросхему управления драйвером. Чтобы исключить или по максимуму сгладить пульсацию на выходе должен стоять конденсатор. Стоимость драйверов такого типа не маленькая, в отличии от балластных, но зато они стабилизируют токи до 750 мА и выше, чего обычным «бесхребетным» не под силу. Можно. Но лучше больше 200 мА не использовать… Опять же опыт эксплуатации.

Пульсация – не один недостаток драйверов. Другим можно считать высокочастотные помехи. В случае, если ваша розетка связана с лампой ( разводка квартиры ), то не избежать проблем с приемом цифровым телевидением, IP и т.п. Естественно, будет проблематично поймать радио. Задался сейчас вопросом: “А Wi-Fi будет страдать?»… Надо поставить опыты…

В хороших драйверах для сглаживания пульсаций стоит установить электролиты, а для снижения ВЧ помех пойдет керамика. В идеале, когда в драйвере присутствует и тот и другой кондер. Но такое сочетание большая редкость. Особенно в китайских лампах. Есть некоторые «индивидуумы», но их очень мало. Когда-нибудь я поговорю о них.

Ну и еще одна общая информация. Для тех, кто любит «очумелые ручки». Вы всегда можете изменить выходной ток своего электронного драйвера, «балуясь» номиналом резисторов. Хотя, нужно ли? Уже выпускается огромное количество драйверов и подобрать нужный – не проблема. И не обязательно приобретать дорогущий. Китайцы давно научились штамповать вполне приличную электронику.

Перейдем к не менее распространенным так называемым драйверам – на конденсаторах. Я их всегда называю «так называемые». Почему? Это будет понятно из выводов в конце статьи.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Светодиодные драйверы для ламп на основе конденсаторов

Обратимся к любой стандартной схеме светодиодной лампы, использующей такие «драйверы»

Схема общая и в ряде случаев ее постоянно модифицируют. Особенно любят китайские производители выкидывать оттуда что-нибудь.

Часто в дешевых лампах мы можем «наблюдать» пульсацию в 100 процентов. В этом случае можно даже не заглядывать внутрь лампы, чтобы утверждать об отсутствии одного из конденсаторов. А именно второго. Т.к. первый необходим для регулировки выходного тока. Его – то уж точно никуда не денут))).

Для тех, кто желает самостоятельно собирать такие драйвера, есть формулы, которые можно найти в сети. И по ним рассчитать номинал конденсатора.

Это можно отнести к большому плюсу такого вида драйвера. Ведь мощность лампы можно подогнать простым подбором конденсатора. Минусом стоит отметить отсутствие электробезопасности. Прикасаться к включенной лампе руками запрещено. Электротравма обеспечена.

Еще одним плюсом можно отметить 100 процентный КПД, ведь потери будут только на самих LEDs и сопротивлениях.

Огромный минус – пульсация. Она берется в результате выпрямления сетевого напряжения и составляет порядка 100 Гц. Согласно ГОСТ и САНпИН пульсация допустима от 10-20 процентов и то, в зависимости от того, в каком помещении установлен источник света. Уменьшить пульсацию можно подбором номинала конденсатора №2. Но все-равно Вы не получите полного отсутствия, а только не много сгладите всплески.

Это второй и главный минус такого типа драйверов. Как говорится: то что дешево – не всегда полезно. А пульсация очень вредна для здорового организма. Да и для не здорового))).

Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Сравнение электронных и балластных драйверов для светодиодных ламп

Из всего выше сказанного ( возможно путанно ) можно сделать сравнительную характеристику между двумя типами драйверов для светодиодных ламп:

Драйверы Балластные на конденсаторах Электронные
Вероятность электротравмы Высокая. За счет отсутствия гальванической развязки с сетью. Запрещено прикосновение к элементам руками при включенной лампе Низкая
Высокие токи Не возможно получить высокие токи для свечения диодов, в результате того, что необходимы конденсаторы большого размера. Конструктивно и лампа будет больших размеров. Кроме того, увеличенные конденсаторы влекут увеличение пусковых токов, что приводит к быстрому выходу из строя выключателей Возможно получить без особых проблем
Пульсация Большая. Порядка 100 Гц. Практически невозможно избавиться из-за необходимости внедрения конденсаторов большой емкости на выходе, фильтрующих пульсацию Легко регулируется либо отсутствует
Схема Схема очень простая. Легко собирается на коленке и не требует больших познаний в радиоэлеткронике Схема сложная. С большим количеством электронных компонентов
Выходное напряжение Легко регулируется Выходной диапазон напряжения узкий
Стоимость Низкая Высокая
Регулировка тока Путем изменения емкости входного конденсатора Более сложная. Как правило только при помощи резисторов. И то не всегда. Все зависит от сложности собранной схемы

Какие светодиодные драйверы для ламп лучше, а какие хуже – решать Вам. У обоих есть как сильные так и слабые стороны. И те и другие можно использовать. Только в разных помещениях. Но для себя я ввел градацию простую. Никогда не считаю качественными лампами те, которые собраны на балластах из конденсаторов по причине пульсации. Я сторонник здорового образа жизни))) и поэтому определяю такие источники света сразу в мусор.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Видео материал на тему светодиодных драйверов для ламп

Ну и на последок, как уже повелось, предлагаю интересное видео о светодиодных драйверах. Вернее об одном, самом простом, который можно собрать на коленке самостоятельно.

В чем отличия между драйвером для светодиодов и блоком питания для LED ленты

Бытует мнение, что блоки питания для светодиодных лент — нечто другое, чем обычный led драйвер. Попробуем прояснить этот вопрос, а заодно научимся правильно выбирать драйвер для светодиодной ленты. Светодиодная лента – это гибкая подложка, на которой расположены все те же светодиоды. Они могут стоять в 2, 3, 4 ряда, это не так важно. Важнее разобраться, как они соединены между собой.

Все полупроводники на ленте разбиты на группы по 3 светодиода, соединенных последовательно через токоограничивающий резистор. Все группы, в свою очередь, соединены параллельно:

Электрическая схема одной секции (слева) и всей светодиодной ленты

Лента продается в бобинах обычно длиной по 5 м и рассчитана на рабочее напряжение В. В последнем случае в каждой группе будет не 3, а 6 светодиодов. Предположим, ты купил ленту на 12 В с удельной потребляемой мощностью 14 Вт/м. Таким образом, общая мощность, потребляемая всей бобиной, составит 14 * 5 = 70 Вт. Если тебе не нужна такая длинная, ты можешь отрезать ненужную часть с условием, что будешь резать ее между секциями. Например, ты отрезал половину. Какие характеристики при этом изменятся? Только потребляемая мощность: она уменьшится вдвое.

Места разделения секций хорошо видны и даже помечены пиктограммами ножниц

Надо ли ограничивать и стабилизировать ток через обычный светодиод? Безусловно, иначе он сгорит. Но мы совсем забыли о резисторе, установленном в каждой секции ленты. Он служит для ограничения тока и подобран таким образом, что при подаче на секцию ровно 12-ти вольт ток через светодиоды будет оптимальным. В задачу драйвера светодиодной ленты входит удержание питающего напряжение строго на уровне 12 В. Все остальное берет на себя токоограничивающий резистор.

Таким образом, главное отличие блока питания led ленты от обычного led драйвера – четко фиксированное выходное напряжение В. Здесь уже не получится использовать обычный драйвер с выходным напряжением, скажем, от 9 до 14 В.

Остальные критерии выбора блока питания для светодиодной ленты следующие:

  • входное напряжение. Методика выбора та же, что и для обычного драйвера: прибор должен быть рассчитан на то входное напряжение и тот род тока, которым ты будешь питать светодиодную ленту;
  • выходная мощность. Мощность блока питания должна быть минимум на 10% выше мощности ленты. При этом слишком большой запас брать не стоит: снижается КПД всей конструкции;
  • класс защиты от окружающей среды. Методика та же, что и для светодиодного драйвера (см. выше): в прибор не должны попадать пыль и влага.

Драйвер для светодиодной ленты – не что иное, как высококачественный, но обычный стабилизатор напряжения. Он выдает строго фиксированное напряжение, но абсолютно не следит за выходным током. При желании и для эксперимента вместо него ты можешь использовать, к примеру, блок питания от ПК (шина 12 В). Яркость и долговечность ленты от этого не пострадают.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости «крутит ручку» резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании сверхмощных светодиодных прожекторов потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

Ресурс работы качественного драйвера — более 70 тыс. часов

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

Для рассчета требуемого напряжения на выходе, необходимо учитывать мощность и силу тока

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Срок годности

Срок эксплуатации драйвера несколько меньше по сравнению с оптической составляющей светодиодного светильника — порядка 30 000 часов. Это связано с рядом причин: скачками напряжения, изменениями температуры, влажности и нагрузкой на преобразователь.

Одно из уязвимых мест — сглаживающий конденсатор, в котором со временем испаряется электролит. В большинстве случаев это происходит при монтаже в помещениях с высокой влажностью или подключении к сети, в которой есть скачки напряжения. Подход приведет к повышению пульсаций на выходе устройства, что негативно воздействует на led-диоды.

Нередко срок службы драйвера уменьшается из-за частичной загруженности. Если используется устройство мощностью 200 Вт с уменьшенной в два раза нагрузкой (100 Вт), половина от номинального значения вернется в сеть, что вызовет перегрузку и более частые сбои питания.

Линейный драйвер для светодиодов своими руками

С теорией закончим, перейдем к практике и попробуем собрать линейный драйвер своими руками. Проще всего эту задачу решить при помощи широко распространенного интегрального стабилизатора КР142ЕН12А (его импортный аналог — LM317). Найти его можно в любом соответствующем магазине, и стоит он в районе 20 рублей. Необходимые материалы и инструменты: паяльник, тестер и провода.

Эта микросхема рассчитана на входное напряжение до 40 В, выдерживает ток до 1.5 А и, главное, имеет встроенную защиту от перегрузки, короткого замыкания и перегрева. Правда, это стабилизатор напряжения, а драйвер должен стабилизировать ток. Но мы этот вопрос решим, чуть изменив типовую схему включения микросхемы.

Универсальный драйвер для светодиодов на интегральном стабилизаторе

Здесь микросхема применяется в роли регулирующего элемента, стабилизирующего ток на заданном уровне. Какой величины этот ток будет? Все зависит от сопротивления резистора R1, номинал которого рассчитывается по простой формуле: R = 1.2/I, где:

  • R – сопротивление в омах;
  • I – необходимый ток в амперах.

Давай попробуем построить драйвер для тех светодиодов, из которых мы делали настольную лампу в начале статьи. Итак, нам нужен драйвер, на напряжение 9.9 В выдающий стабилизированный ток 300 мА. Делаем расчет номинала резистора R1: 1.2/0.3= 4 Ом. Поскольку резистор стоит в токовой цепи, мощность его выбираем не менее 4 Вт.

Здесь отлично подойдут резисторы, используемые практически во всех телевизорах в качестве гасящих по питанию (такие лежат в любом магазине). Они имеют мощность 2 Вт и сопротивление 1-2 Ом. Если резисторы одноомные, то их понадобится 4 шт, если двухомные – 2 шт. Соединяем их последовательно, чтобы сопротивления сложились.

Крепим микросхему на небольшой радиатор и подключаем к выходу нашего драйвера цепочку из трех последовательно соединенных светодиодов, соблюдая полярность. Можно включать. Но куда? Какое входное напряжение у этого драйвера? Вот тут начинается самое интересное. Напряжение на входе должно быть минимум на 2-3 вольта больше того, что необходимо светодиодам, но не более 40 В – больше микросхема не выдержит.

В нашем конкретном случае светодиодам нужно 9.9 В. Значит, на вход можно подать постоянное напряжение величиной от 12 до 40 В. Причем напряжение это может быть нестабилизированное. Подойдет автомобильный аккумулятор, блок питания ноутбука или ПК, понижающий трансформатор с диодным мостом. Подключаем, соблюдая полярность, и наш фонарь готов!

А как же с выходным напряжением? Об этом не нужно беспокоиться. Как только драйвер стабилизирует ток на заданном уровне, нужное напряжение на светодиодах установится без нашей помощи. Кто не верит, берет тестер и измеряет.

Вот и закончилась наша беседа о led драйверах. Надеюсь, теперь ты не только знаешь, как работает этот важный узел, но и сможешь его правильно выбрать, подключить, а при необходимости даже собрать своими руками.

Схема драйвера светодиодной лампы 220 В

Стабилизатор тока в случае со светодиодной лампой устанавливается в цоколе прибора. И выполняется на базе недорогих микросхем, например, СРС9909. Такие лампы обязательно оснащаются системой охлаждения. Служат они намного дольше, чем любые другие, но лучше отдавать предпочтение проверенным производителям, так как в китайских заметна ручная пайка, асимметрия, отсутствие термопасты и прочие недостатки, снижающие срок службы.

Схема драйвера для светодиодной лампы

Самостоятельная сборка преобразователя для светодиодов 220 В

Рассмотренная схема напоминает блок питания импульсного типа. Для примера возьмем простой блок питания импульсного типа, не имеющий гальванической развязки. Главные преимущества подобной схемы — простота и надежность.

При выборе метода действуйте осторожно, поскольку отсутствуют какие-либо ограничения по выходному току. Светодиоды будут питаться от положенных им 1,5 – 2 А, но если по неосторожности коснуться руками оголенных проводов, значение тока вырастет до десятков ампер и произойдет сильный удар.

Простейшая схема преобразователя тока на 220 В содержит три каскада:

  • делитель напряжения с емкостным резистором;
  • несколько диодов (мост);
  • стабилизатор напряжения.

В первом каскаде емкостной резистор используется для самостоятельной подзарядки конденсатора, не имеет отношения к работе самой схемы. Номинал не имеет значения и обычно составляет от 100 кОм до 1 МОм при мощности не более 1 Вт. В этих целях нельзя выбирать электролитический конденсатор.

Ток через конденсатор проходит до тех пор, пока он полностью не зарядится. Чем ниже емкость конденсатора, тем быстрее завершится процесс. Конденсатор на 0,3 мкФ пропустит через себя меньшую часть от общего напряжения сети.

Диодный мост используется для трансформации переменного напряжения в постоянное. После того как конденсатор «отсечет» практически весь вольтаж, диодный мост выдаст постоянный ток с напряжением 20 – 22 В.

На третьем каскаде устанавливают сглаживающий фильтр для стабилизации напряжения. Конденсатор и диодный мост уменьшают напряжение. Любые изменения напряжения в сети сказываются на выходной амплитуде диодного моста. Для уменьшения пульсации параллельно в схему подключают электролитический конденсатор.

Схема драйверов для светодиодов с регулятором яркости на базе РТ4115 своими руками

Простой преобразователь тока можно собрать на базе готовой китайской микросхемы PT4115. Она является достаточно надежной для применения. Характеристики микросхемы:

  • КПД до 97%;
  • есть вывод для устройства, регулирующего яркость;
  • защищена от разрывов нагрузки;
  • максимальное отклонение стабилизации 5%;
  • входное напряжение 6÷30 В;
  • мощность на выходе 1,2 А.

Микросхема подходит для питания LED-источника свыше 1 Вт. Имеет минимум компонентов обвязки.

Расшифровка выходов микросхемы:

  • SW – выходной переключатель;
  • DIM – диммирование;
  • GND – сигнальный и питающий элемент;
  • CIN – конденсатор
  • CSN – датчик тока;
  • VIN – напряжение питания.

Собрать драйвер на базе этой микросхемы может даже начинающий мастер.

Возможный вариант сборки схемы драйвера для светодиодов на базе pt4115

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P = P(led) × n

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Импульсный драйвер

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Драйверы для светодиодов: что это и для чего они нужны

Время чтения: 6 минутНет времени? Ссылка на статью успешно отправлена!

Отправим материал вам на e-mail

В последние годы все большую популярность стало набирать светодиодное освещение. Это вызвано тем, что используемые в светильниках светодиоды, их еще называют светоизлучающими диодами (СИД), довольно яркие, экономичные и долговечные. При помощи светодиодных элементов создаются интересные и оригинальные световые эффекты, которые можно применять в самых различных интерьерах. Однако, такие осветительные приборы очень требовательны к параметрам электросетей, особенно к величине тока. Поэтому для нормальной работы освещения в цепь должны быть включены драйверы для светодиодов. В этой статье мы попробуем разобраться, что же такое светодиодные драйверы, каковы их основные характеристики, как не ошибиться при выборе и можно ли сделать его своими руками.

Без такого миниатюрного устройства светодиоды работать не будут

Что такое драйвер для LED-освещения и его необходимость

Поскольку светодиоды являются токовыми приборами, то соответственно они очень чувствительны к этому параметру. Для нормальной работы освещения требуется, чтобы через LED-элемент проходил стабилизированный ток с номинальной величиной. Для этих целей и был создан драйвер для светодиодных светильников.

Некоторые читатели, увидев слово драйвер, будут в недоумении, поскольку все мы привыкли, что этим термином обозначается некое ПО, позволяющее управлять программами и устройствами. В переводе с английского языка driver означает: водитель, машинист, поводок, мачта, управляющая программа и еще более 10 значений, но всех их объединяет одна функция – управление. Так обстоит дело и с драйверами для светодиодных светильников, только управляют они током. Итак, с термином разобрались, теперь перейдем к сути.

Драйвера ставят даже в энергосберегающих лампах с цоколем, правда он хорошо замаскирован

LED-драйвер – электронное устройство, на выходе которого, после стабилизации, образуется постоянный ток необходимой величины, обеспечивающий нормальную работу светодиодных элементов. В этом случае стабилизируется именно ток, а не напряжение. Устройства, стабилизирующие выходное напряжение называются блоками питания, которые также используются для питания светодиодных элементов освещения.

Как мы уже поняли, основным параметром драйвера для светодиодов является выходной ток, который устройство может обеспечивать длительное время при включении нагрузки. Для нормального и стабильного свечения LED-элементов требуется, чтобы через светодиод протекал ток, величина которого должна совпадать со значениями указанными в техническом паспорте полупроводника.

Где нашли применение драйвера для светодиодов

Как правило, светодиодные драйверы рассчитаны на работу с напряжением 10, 12, 24, 220 В и постоянным током в 350 мА, 700 мА и 1 А. Стабилизаторы тока для светодиодов производят, в основном, под определенные изделия, но существуют и универсальные устройства, подходящие к LED-элементам ведущих производителей.

Стабилизаторы тока применяются и в уличном (основном и декоративном) освещении

В основном LED-драйвера в сетях с переменным током используются для:

  • систем уличного и бытового освещения;
  • настольных офисных светильников;
  • светодиодных лент и декоративной подсветки.

В электроцепях с постоянным током стабилизаторы нужны для нормальной работы бортового освещения и фар автомобиля, переносных фонарей и т.д.

Применяют драйвера и в светодиодных прожекторах с датчиками движения

Токовые стабилизаторы адаптированы для работы с системами контроля и датчиками фотоэлементов, а в силу своей компактности могут быть легко установлены в распределительных коробках. Также посредством драйверов можно легко менять яркость и цвет светодиодных элементов, уменьшая величину тока посредством цифрового управления.

Как работают стабилизирующие устройства для светодиодов

Принцип работы преобразователя для светодиодных ламп и лент состоит в поддержании заданной величины тока независимо от выходного напряжения. В этом и заключается разница между блоком питания и драйвером для светодиодов.

Простейшая схема драйвера для светодиодной лампы

Если посмотреть на представленную выше схему то мы увидим, что ток, благодаря резистору R1, стабилизируется, а конденсатор C1 задает необходимую частоту. Далее в работу включается диодный мост, в результате чего на светодиоды поступает стабилизированный ток.

Характеристики устройства, на которые нужно обратить внимание

Подбирая ЛЕД-драйвер для светодиодных светильников необходимо обязательно учитывать тот основных параметра, а именно: ток, выходное напряжение и мощность, потребляемая подключаемой нагрузкой.

Выходное напряжение токового стабилизатора зависит от следующих факторов:

  • количество LED-элементов;
  • падение напряжения на СИД;
  • способ подключения.

Ток на выходе устройства обусловлен мощностью и яркостью светодиодов. Мощность нагрузки оказывает влияние на потребляемый ею ток в зависимости от требуемой интенсивности свечения. Именно стабилизатор обеспечивает светодиодам ток необходимой величины.

Хорошо, когда на корпусе написаны все параметры на которые нужно обращать внимание

Мощность светодиодного светильника зависит непосредственно от:

  • мощности каждого LED-элемента;
  • общего количества светодиодов;
  • цвета.

Потребляемую нагрузкой мощность можно рассчитать по следующей формуле:

PН = PLED × N, где

  • PН – общая мощность нагрузки;
  • PLED – мощность отдельного светодиода;
  • N – количество светодиодных элементов, подключаемых в нагрузку .

Максимальная мощность токового стабилизатора не должна быть меньше PН. Для нормальной работоспособности LED-драйвера рекомендуется обеспечить запас мощности минимум на 20÷30%.

Цвет светодиодного элемента также играет большую роль

Помимо мощности и количества СИД, мощность нагрузки, подключаемой к драйверу, зависит и от цвета светодиодных элементов. Дело в том, что светодиоды разного цвета обладают разной величиной падения напряжения при одинаковом значении тока. Так, например, у светодиода CREE XP-E красного цвета падение напряжения при токе в 350 мА составляет 1,9÷2,4 В, и средняя мощность потребления будет порядка 750 мВт. У зеленого светодиодного элемента при том же токе падение напряжения будет 3,3÷3,9 В, а средняя мощность составит уже почти 1,25 Вт. Соответственно стабилизатором тока рассчитанным на мощность 10 Вт можно запитывать 12÷13 СИД красного цвета или 7-8 зеленых светодиодов.

Виды стабилизаторов по типу устройства

Токовые стабилизаторы для светоизлучающих диодов разделяются по типу устройства на импульсные и линейные.

У линейного драйвера выходом является токовый генератор, обеспечивающий плавную стабилизацию выходного тока при неустойчивом входном напряжении, не создавая при этом высокочастотных электромагнитных помех. Такие устройства имеют простую конструкцию и невысокую стоимость, однако не очень высокий КПД (до 80%) сужает область их использования до маломощных LED-элементов и лент.

Линейный стабилизатор тока для светодиодов

Устройства импульсного типа позволяют создавать на выходе череду токовых импульсов высокой частоты. Подобные драйвера работают по принципу широтно-импульсной модуляции (ШИМ), то есть средняя величина тока на выходе определяется отношением ширины импульсов к их частоте. Подобные устройства более востребованы в силу своей компактности и более высокого КПД, составляющего порядка 95%. Однако в сравнении с линейными драйверами ШИМ стабилизаторы имеют больший уровень электромагнитных помех.

Импульсный LED-преобразователь

Необходимо сразу заметить, что резистор не может являться полноценной заменой драйверу, поскольку он не в состоянии защитить светодиоды от перепадов в сети и импульсных помех. Также не лучшим вариантом будет использование линейного источника тока вследствие его низкой эффективности, ограничивающей возможности стабилизатора.

Китайцы никогда не заботились об объемах наполнения – все в стиле минимализма

При выборе LED-драйвера для светодиодов стоит придерживаться следующих основных рекомендаций:

  • приобретать стабилизатор тока лучше всего одновременно с нагрузкой;
  • учитывать падение напряжения на СИД;
  • ток высокого номинала уменьшает КПД светодиода и приводит его перегреву;
  • учитывать мощность нагрузки, подключаемой к драйверу.

Также необходимо обращать внимание, чтобы на корпусе стабилизатора была указана его мощность, рабочие диапазоны входного и выходного напряжения, номинальный стабилизированный ток и степень влаго- и пылезащищенности устройства.

Рекомендация! Насколько мощный и качественный будет драйвер для светодиодной ленты или СИД выбирать, конечно же, вам. Тем не менее, следует помнить, что для нормальной работы всей создаваемой системы освещения лучше всего купить фирменный преобразователь, особенно если речь идет о светодиодных прожекторах и других мощных осветительных приборах.

Подключение преобразователей тока для светодиодов: схема драйвера для светодиодной лампы 220 В

Большинство производителей выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения. Все преобразователи для LED-освещения, существующие на данный момент, делятся на простые, созданные на основе 1÷3 транзисторов и более сложные, выполненные с применением микросхем с ШИМ.

Схема драйвера для светодиодов от сети 220 В с использованием микросхемы

Выше представлена схема драйвера на базе микросхемы, но как мы упоминали, существуют способы подключения при помощи резисторов и транзисторов. На самом деле вариантов подключения светодиодного освещения много и рассмотреть их все подробно в одном обзоре просто невозможно. На просторах интернета можно найти практически любую схему, подходящую именно для вашей ситуации.

Как рассчитать токовый стабилизатор для светодиодного освещения

Для определения выходного напряжения преобразователя требуется рассчитать соотношение мощности и тока. Так, например, при мощности 3 Вт и токе 0,3 А максимальное напряжение на выходе будет равно 10 В. Далее необходимо определиться со способом подключения, параллельное или последовательное, а также количеством светодиодов. Дело в том, что от этого зависит номинальная мощность и напряжение на выходе драйвера. После вычисления всех этих параметров можно подбирать соответствующий стабилизатор.

Обязательно нужно учитывать мощность нагрузки и выбирать стабилизатор с запасом этого значения

Стоит отметить, что у преобразователей рассчитанных на определенное количество LED-элементов имеется защита от внештатных ситуаций. Такой тип устройств отличается некорректной работой при подключении меньшего числа светодиодов – наблюдается мерцание или вообще не работают.

Диммируемый драйвер для LED-элементов — что это?

Последние модели преобразователей для светодиодов адаптированы для работы с регуляторами яркости свечения полупроводниковых кристаллов – диммерами. Использование этих устройств позволяет более рационально использовать электроэнергию и увеличить ресурс LED-элемента.

Диммируемые драйвера позволят управлять яркостью ламп и сделать освещение более комфортным для глаз

Диммируемые преобразователи бывают двух типов. Одни включены в цепь между стабилизатором и светодиодными элементами освещения и работают посредством ШИМ-управления. Преобразователи подобного типа используются для работы со светодиодными лентами, бегущей строкой и т.п.

Во втором варианте диммер устанавливается на разрыве между источником питания и стабилизатором, а принцип работы заключается, как в управлении параметрами тока, проходящего через светодиоды, так и при помощи широтно-импульсной модуляции.

Особенности китайских преобразователей тока для светодиодов

Высокая востребованность драйверов для LED-освещения привела к их массовому производству в азиатском регионе, частности в Китае. А эта страна славится не только качественной электроникой, но и массовым производством всевозможных подделок. Светодиодные драйвера китайского производства представляют собой импульсные преобразователи тока, как правило, рассчитанные на 350÷700 мА и в бескорпусном исполнении.

Китайские драйвера конечно дешевые, но лучше купить устройство проверенного производителя

Преимущества китайских преобразователей тока заключаются лишь в невысокой стоимости и наличии гальванической развязки, а вот недостатков все-таки больше и состоят они в:

  • высоком уровне радиопомех;
  • ненадежности, вызванной дешевыми схемными решениями;
  • незащищенность от сетевых колебаний и перегрева;
  • высокий уровень пульсаций на выходе стабилизатора;
  • малый срок эксплуатации.

Обычно комплектующие китайского производства работают на пределе своих возможностей, без наличия какого-либо запаса. Поэтому если желаете создать надежно работающую систему освещения лучше всего покупать преобразователь для светодиодов от известного проверенного производителя.

Срок эксплуатации токовых преобразователей

Как и любое электронное устройство, драйвер для светодиодного источника тока имеет определенный срок эксплуатации, который зависит от следующих факторов:

  • стабильность напряжения в сети;
  • температурные перепады;
  • нагрузка;
  • уровень влажности.

Фирменный светодиодный драйвер прослужит однозначно дольше китайского или самодельного

Известные производители дают гарантию на свои изделия в среднем на 30 000 часов работы. Дешевые самые простые стабилизаторы рассчитаны на эксплуатацию в течение 20 000 часов, среднего качества – 20 000 ч и японские – до 70 000 ч.

Схема светодиодного драйвера на базе РТ 4115

Благодаря появлению большого количества светодиодных элементов с мощностью 1÷3 Вт и невысокой ценой, большинство людей предпочитает на их основе делать домашнее и автомобильное освещение. Однако для этого необходим драйвер, который позволит стабилизировать ток до номинального значения.

Простая схема драйвера для светодиодов с PT4115 с регулятором яркости

Для корректной работы преобразователя рекомендуется использовать танталовые конденсаторы. Если не установить конденсатор по питанию, то интегральная микросхема (ИМС) просто выйдет из строя при включении устройства в сеть. Выше представлена схема драйвера для светодиода на ИМС PT4115.

Как сделать своими руками драйвер для светодиодов

При помощи готовых микросхем даже начинающий радиолюбитель в состоянии собрать преобразователь для светодиодов различной мощности. Для этого требуется умение чтения электросхем и опыт работы с паяльником.

Собрать токовый стабилизатор для 3-ваттных стабилизаторов, можно используя микросхему от китайского производителя PowTech – PT4115. Данная ИМС может быть использована для светодиодных элементов с мощностью более 1 Вт и состоит из блоков управления с довольно мощным транзистором на выходе. Преобразователь, созданный на основе PT4115, имеет высокую эффективность и минимальный набор компонентов.





Как видим при наличии опыта, знаний и желания можно собрать светодиодный драйвер практически по любой схеме. Теперь рассмотрим пошаговую инструкцию создания простейшего токового преобразователя для 3-х LED-элементов мощность по 1 Вт, из зарядного устройства для мобильного телефона. Кстати, это поможет лучше разобраться в работе устройства и позднее перейти к более сложным схемам, рассчитанным на большее количество светодиодов и ленты.

Инструкция по сборке драйвера для светодиодов

Изображение Описание этапа
Для сборки стабилизатора на потребуется старое зарядное устройство от мобильного телефона. Мы взяли от «Самсунга», так они надежны. Зарядное устройство с параметрами 5 В и 700 мА аккуратно разобрать.
Также нам понадобится переменный (подстроечный) резистор на 10 кОм, 3 светодиода по 1 Вт и шнур с вилкой.
Вот так выглядит разобранное зарядное, которое мы будет переделывать.
Выпаиваем выходной резистор на 5 кОм и на его место ставим «подстроечник».
Далее находим выход на нагрузку и определив полярность припаиваем светодиоды, заранее собранные последовательно.
Выпаиваем старые контакты от шнура и на их место подсоединяем провод с вилкой. Перед тем как проверить на работоспособность драйвер для светодиодов нужно убедиться в правильности соединений, их прочности и чтобы ничего не создало короткого замыкания. Только после этого можно приступать к тестам.
Подстроечным резистором начинаем регулировку пока светодиоды не начнут светиться.
Как видим LED-элементы горят.
Тестером проверяем необходимые нам параметры: выходное напряжение, ток и мощность. При необходимости выполняем регулировку резистором.
Вот, и все! Светодиоды горят нормально, нигде ничего не искрит и не дымит, а значит переделка прошла успешно, с чем вас и поздравляем.

Как видите сделать простейший драйвер для светодиодов очень просто. Конечно, опытным радиолюбителям эта схема может быть не интересна, но для новичка она отлично подойдет для практики.

Где можно купить драйвер для светодиодов и какова цена вопроса

Приобрести преобразователь для светодиодов можно в специализированных магазинах для радиолюбителей, в магазинах или в интернете. Последний вариант сейчас наиболее популярен, поскольку в интернет-магазинах цены, как правило, ниже, а ассортимент товаров больше.

Как видим, по приведенным в таблице ценам, заниматься самостоятельно созданием ЛЕД-драйвера для светодиодных светильников может либо «отъявленный» радиолюбитель, либо тот, кто предпочитает делать все своими руками. Кстати, вещи, созданные своими руками, приносят больше удовольствия, чем те, что были приобретены в магазине. А вообще это дело вкуса, времени, желания и финансов.

Несколько слов в завершение

Вот мы и разобрались, что такое драйвер для светодиода, где он применяется, как работает и даже как можно его сделать своими руками. Хочется надеяться, что информация, которую вы сегодня узнали после прочтения нашей статьи, дала вам новые знания, была интересной и самое главное полезной. Если у вас возникли вопросы или вы можете предложить что-то свое, то обязательно напишите нам, и мы разберемся вместе и ответим на ваши вопросы.

Сегодня, наверное, ни одна квартира или частный дом не обходится без светодиодного освещения. Да и уличное освещение постепенно меняется на экономичные и долговечные LED-элементы. Но глядя на сегодняшнюю тему разговора спрашивается – при чем тут водитель (с английского «driver» переводится именно так)? Это первый вопрос, приходящий в голову человеку, несведущему в устройстве светодиодного освещения. На самом деле без такого устройства световые диоды не работают с напряжением в сети 220 В. Сегодня разберемся, какую функцию выполняет драйвер для светодиодов, как подключить это устройство и возможно ли изготовить собственными руками.

Без такого устройства светодиоды работать не будут

Зачем нужны драйверы для светодиодов и что это такое

Ответ на вопрос, что такое драйвер для светодиода, довольно прост. Это устройство, стабилизирующее напряжение и придающее ему те характеристики, которые нужны для работы LED-элементов. Чтобы было понятнее, проведем аналогию с пускорегулирующим устройством люминесцентной лампы, которая также не может работать без дополнительного оборудования. Разница лишь в том, что драйвер имеет компактный размер и умещается в корпусе светового прибора. По сути его можно назвать стабилизирующим пусковым устройством или преобразователем частоты.

Даже внутри светодиодной лампочки есть миниатюрный преобразователь малой мощности

Где применяют стабилизирующие устройства для LED-элементов

LED-драйверы для светодиодов применяются в различных областях:

  • фонари уличного освещения;
  • лампы бытового освещения;
  • светодиодные ленты и различная подсветка;
  • офисные светильники с формой люминесцентных ламп.

Даже дневные ходовые огни автомобилей требуют установки такого устройства, но здесь все гораздо проще, можно обойтись одним резистором. И хотя драйвер для светодиодной ленты (к примеру) по характеристикам отличается от стабилизатора напряжения лампочки, функцию они выполняют одну.

Разница в размерах велика, а характеристики одинаковые

Принцип работы схемы драйвера светодиодной лампы 220 В

Принцип работы устройства заключается в поддержании на выходном напряжении (независимо от его величины) заданного тока. В этом и состоит отличие от стабилизирующего блока питания, который отвечает за напряжение.

Простейшая схема преобразователя для ленты на световых диодах

Рассматривая схему видим, что ток, проходя через сопротивления, стабилизируется, а конденсатор придает ему нужную частоту. Затем в дело вступает выпрямляющий диодный мост. Получаем стабилизированный прямой ток на светодиодах, который повторно ограничивается резисторами.

Характеристики драйверов, достойные внимания

Характеристики преобразователей, необходимых в том или ином случае, определяются, исходя из параметров LED-потребителей. Основными можно назвать:

  1. Номинальную мощность драйвера – этот параметр должен превышать общую мощность, потребляемую световыми диодами, которые будут в его схеме.
  2. Выходное напряжение – зависит от величин падения напряжения на каждом из световых диодов.
  3. Номинальный ток, который зависит от яркости свечения и потребляемой мощности элемента.

Различные цвета LED-элементов имеют разное падение напряжения Важно знать! Падение напряжения на светодиоде зависит от его цвета. К примеру, если к БП 12 В получится подключить 16 светодиодов красного цвета, то максимальное количество зеленых составит уже 9.

Разделение LED-драйверов по типу устройства

Разделить преобразователи можно на два типа – линейные и импульсные. Оба типа применимы к световым диодам, но различия между ними заметны и по стоимости, и по техническим характеристикам.

Линейный преобразователь тока и его схема

Линейные преобразователи отличаются простотой конструкции и низкой стоимостью. Но такие драйверы имеют существенный недостаток – возможность подключения только маломощных световых элементов. Часть энергии тратится на выделение тепла, что способствует снижению коэффициента полезного действия (КПД).

Импульсные преобразователи основаны на принципе широтно-импульсной модуляции (ШИМ) и при их работе величины выходных токов обусловлены таким параметром, как коэффициент заполнения. Это означает, что изменения частоты импульсов нет, а вот коэффициент заполнения способен изменяться на величины от 10 до 80%. Такие драйверы позволяют продлить срок службы световых диодов, но имеют один недостаток. При их работе возможно наведение электромагнитных помех. Попробуем разобраться, чем это грозит человеку на простом примере.

Импульсные стабилизаторы немного крупнее

У проживающего в квартире или доме установлен кардиостимулятор. При этом в небольшой комнате установлена люстра с множеством приборов, работающих на импульсных лед драйверах для светодиодных ламп. Кардиостимулятор при этом может начать давать сбои. Конечно, это утрировано и для создания столь сильных помех нужно очень много ламп, которые находятся на расстоянии менее метра от кардиостимулятора, но все же риск присутствует.

А это преобразователь для более мощного светодиода

Как подобрать драйвер для светодиода: некоторые нюансы

Перед тем, как приобретать преобразователь, рассчитывают потребляемую светодиодами мощность. Номинальная мощность устройства должна превышать этот показатель на 25÷30%. Так же стабилизатор должен совпадать по выходному напряжению.

Если планируется скрытое размещение, лучше выбрать преобразователь без корпуса – стоимость выйдет ниже при тех же технических характеристиках.

Китайцы делают все довольно просто и без лишних деталей Важно! Драйверы китайского производства обычно не соответствуют заявленным характеристикам. Не стоит экономить на приобретении преобразователя «made in оттуда». Лучше отдать предпочтение российскому производителю.

Как подключить LED-элементы к преобразователю: способы и схемы

Светодиоды к драйверу подключаются двумя способами – последовательно или параллельно. Для примера возьмем 6 LED-излучателей с падением напряжения 2 В. При последовательном подключении понадобится драйвер на 12 В и 300 мА. При этом свечение будет ровным по всем элементам.

Схема подключения драйвера к панели или световой полосе

Подключив излучатели параллельно в группе по 3, получим возможность использования преобразователя 6 В, но уже на 600 мА. Проблема в том то, что из-за неравномерного падения напряжения одна линия будет светиться ярче, чем другая.

Рассчитываем характеристики преобразователя для светодиодов

Для точного расчета сначала определяемся с потребляемой мощностью светодиодов. После решается вопрос со схемой подключения – будет она параллельной или последовательной. От этого будет зависеть выходное напряжение и номинальная мощность необходимого преобразователя. Это вся работа, которую нужно выполнить. Теперь в магазине электротехники или на онлайн ресурсе подбираем драйвер согласно высчитанным показателям.

Прежде чем выбрать преобразователь, нужно рассчитать потребляемую световыми диодами мощность Полезно знать! Приобретая преобразователь, спрашивайте у продавца сертификат соответствия на изделие. Если он отсутствует, от покупки лучше воздержаться.

Что такое диммируемый драйвер для световых диодов

Диммируемым называется драйвер для светодиодного светильника, поддерживающий изменение входных параметров тока и способный в зависимости от этого изменять выходные. Эти достигается изменение интенсивности свечения LED-излучателей. Примером может послужить контроллер для светодиодной ленты с дистанционным управлением. При желании появляется возможность «приглушить» освещение в помещении, дать отдохнуть глазам. Так же это уместно, если в комнате спит ребенок.

Таким устройством осуществляется диммирование

Диммирование выполняется с ПДУ, или со штатного механического бесступенчатого переключателя.

Китайские преобразователи – что в них особенного

Китайские друзья славятся умением подделать оборудование так, что им становится невозможно пользоваться. По отношению к драйверам можно сказать так же. Приобретая китайское устройство будьте готовыми к завышенным заявленным характеристикам, низкому качеству и быстрому выходу преобразователя из строя. Если же собирается первый в жизни LED-светильник, потренироваться и получить навыки в радиоэлектронике, такие изделия незаменимы по причине низкой стоимости и простоты исполнения.

Если добавить в схему китайского преобразователя конденсатор, срок службы лампы увеличится

Что влияет на срок службы преобразователей

Причинами выхода из строя преобразователя становятся:

  1. Резкие скачки напряжения в сети.
  2. Повышенная влажность, если устройство не соответствует по степени защиты.
  3. Перепады температур.
  4. Недостаточная вентиляция.
  5. Повышенная запыленность.
  6. Неправильный расчет мощности потребителей.

Вот что происходит при перегреве устройства стабилизации тока

Любую из этих причин можно предупредить или исправить. Это означает, что в силах домашнего мастера продлить срок службы стабилизирующего устройства.

Схема драйвера светодиодов PT4115 с регулятором яркости

Речь пойдет о китайском производителе, который является исключением из правил. Микросхема, на основе которой можно собрать простейший преобразователь как раз его производства. Микропроцессор PT4115 обладает хорошими характеристиками и набирает популярность в России.

Схема стабилизатора на основе микропроцессора PT4115

Если освещение светодиодное и обычные регуляторы не подходят, то тогда устанавливаются диммеры для светодиодных ламп 220 В, которые немного отличаются конструктивно и технически. Сегодня разберемся, какими они бывают, как выбрать и даже изготовить подобное устройство самостоятельно.

На рисунке представлена простейшая схема драйвера PT4115 для светодиодов, собрать которую сможет начинающий домашний мастер без опыта работы с радиоэлектроникой. Интересным в микросхеме является дополнительный выход (DIM) позволяющий подключение светорегулятора (диммера).

Как сделать драйвер для светодиодов своими руками

Собрать схему драйвера светодиодной лампы сможет любой начинающий мастер. Но для этого потребуется аккуратность и терпение. С первого раза стабилизирующее устройство может не получиться. Чтобы читателю было понятнее, как выполняется работа, предлагаем несколько простейших схем.

Как можно убедиться, ничего сложного в схемах драйверов для светодиодов от сети 220 В нет. Попробуем рассмотреть пошагово все этапы работ.

Пошаговая инструкция изготовления драйвера для светодиодов своими руками

Фото пример Выполняемое действие
Для работы нам понадобится обычный блок питания для телефона. С его помощью все выполняется быстро и просто.
После разборки зарядного устройства в руках у нас уже практически полноценный драйвер для трех одноваттных светодиодов, однако его нужно немного доработать.
Выпаиваем ограничительный резистор на 5 кОм, который находится возле выходного канала. Именно он не дает зарядному устройству подать слишком большое напряжение на сотовый телефон.
Вместо ограничительного впаиваем подстроечный резистор, выставив на нем те же 5кОм. Впоследствии добавим напряжение до необходимого.
На выходной канал припаивается 3 светодиода по 1 Вт каждый, соединенные последовательно, что в сумме даст нам 3 Вт.
Находим входные контакты и отпаиваем от печатной платы. Они нам уже не нужны…
…а на их место припаиваем сетевой шнур, по которому будет подаваться питание 220 В.
При желании в разрыв можно поставить резистор на 1 Ом, выставить амперметром все показатели. В этом случае диапазон затухания светодиодов будет шире.
После полной сборки проверяем работоспособность. Выходное напряжение 5 В, светодиоды пока не светятся.
Поворачивая регулятор на резисторе видим, как LED-элементы начинают «разгораться».

Будьте внимательны. От такого преобразователя можно получить разряд не только в 220 В (от сетевого шнура), но и удар порядка 450 В, что довольно неприятно (проверено на себе).

Очень важно! Перед тем, как проверить драйвер для светодиодов на работоспособность и подключить к источнику питания, стоит еще раз визуально проверить правильность собранной схемы. Поражение электрическим током опасно для жизни, а вспышка от короткого замыкания может причинить вред глазам.

Преобразователи тока для световых диодов: где приобрести и какова стоимость

Такие устройства приобретаются в магазинах электротехники или на интернет ресурсах. Второй вариант выгоднее по цене. К тому же многие производители предлагают бесплатную доставку. Рассмотрим некоторые модели со входным напряжением 220 В с техническими характеристиками и стоимостью по состоянию на декабрь 2017 года.

Фото Модель Класс защиты, IP Выходное напряжение, В Мощность, Вт Стоимость, руб.
DFT-I-40- LD64 20 60-130 45 400
ZF-AC LD49 40 40-70 54 450
XS0812-12W PS12 20 24-44 12 200
PS100 (открытый) 20 30-36 100 1100
PF4050A PS50 65 27-36 50 500
PF100W LD100 65 23-36 100 1000

Глядя на цены можно сказать, что самостоятельное изготовление преобразователя тока скорее подойдет тем, для кого это только увлечение. Приобрести такое устройство можно довольно недорого.

В качестве платформы для самостоятельной сборки драйвера можно использовать старую печатную плату, соединив контакты проводами

Подведём итог

Выбирая преобразователь тока для светодиодных ламп, следует все внимательно просчитать. Любая погрешность может привести к уменьшению срока службы приобретенного прибора. Несмотря на невысокую стоимость стабилизатора, довольно неприятно постоянно выкидывать деньги на ветер. Только в этом случае драйвер прослужит положенный ему срок. А при самостоятельном изготовлении соблюдайте правила электробезопасности и будьте аккуратны и внимательны при сборке схемы.

Надеемся, что предоставленная сегодня информация была полезна нашему читателю. Возникшие вопросы можно задать в обсуждении – мы на них обязательно ответим. Пишите, спрашивайте, делитесь опытом с другими читателями.

А напоследок небольшое видео по сегодняшней теме:

Светодиоды, в последние годы серьезно потеснившие все остальные источники света, сегодня можно встретить повсеместно. Они используются в квартирах и офисах, освещают улицы, украшают здания и интерьеры. Но для правильной работы полупроводникового источника света необходим качественный и надежный драйвер для светодиодов. Сегодня мы поговорим об этом исключительно важном узле и разберемся, почему этот драйвер так необходим, как он работает, и даже попытаемся сделать led driver своими руками.

Что такое драйвер и зачем он нужен

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным. Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача. При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта Алексей Бартош Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос эксперту Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать. к содержанию

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Мнение эксперта Алексей Бартош Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос эксперту Важно! Все полупроводники, работающие от одного драйвера, должны быть однотипными и желательно из одной партии. В противном случае, неизбежен разброс параметров светодиодов, в результате которого один из них будет светить вполнакала, а второй быстро сгорит.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение – сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность – не менее 3 Вт;
  • корпус – пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Мнение эксперта Алексей Бартош Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос эксперту Если у тебя очень большое количество светодиодов, то при последовательном включении их общее напряжение может превысить максимально возможное для существующих драйверов. В этом случае обратись к разделу Схема подключения драйвера к светодиодам, который находится в конце этой статьи. к содержанию

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания. Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.

Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.

При таком способе подключения токи всех четырех групп светодиодов складываются

Адаптеры, блоки питания

  • Главная
  • Компания
    • Компания
    • О компании
    • Новости
    • Вакансии
    • Результаты СОУТ
    • Условия соглашения
    • Политика конфиденциальности
  • Каталог
    • Каталог
    • Светодиодные лампы
      • Светодиодные лампы
      • Диммируемые
      • Цоколь G4, G9
      • Цоколь Е14
      • Цоколь Е27
      • Цоколь GX53, GX70
      • Цоколь GU10, GU5.3
      • Цоколь AR111
      • Фитолампы
      • LED трубки T5, Т8
      • Лампы специальные
      • РЕТРО лампы (накаливания)
      • 12 вольт
      • Мощные E40
    • Светодиодные ленты
      • Светодиодные ленты
      • 12 вольт
      • 24 Вольта
      • 220 Вольт
      • Гибкий Неон 220В
      • Светодиодные линейки
      • Для сауны, бани и влажных помещений
      • Коннекторы, крепёж и аксессуары для светодиодной ленты
        • Коннекторы, крепёж и аксессуары для светодиодной ленты
        • Коннекторы для светодиодных лент 12/24В
        • Коннекторы для светодиодных лент 220В
        • Клей, обезжириватель
        • Крепеж для светодиодной ленты
    • Светодиодные модули, пиксели
    • Адаптеры, блоки питания
      • Адаптеры, блоки питания
      • Адаптеры
      • 12 Вольт
        • 12 Вольт
        • Без влагозащиты
        • Влагозащищенные
      • 24 Вольта
        • 24 Вольта
        • Без влагозащиты
        • Влагозащищенные
    • Профиль для светодиодных лент
      • Профиль для светодиодных лент
      • «Jazzway»
      • «Viasvet»
    • Светильники
      • Светильники
      • Встраиваемые
        • Встраиваемые
        • Офисное освещение
        • Торговое освещение
        • Для жилых помещений
      • Накладные
        • Накладные
        • Интерьерные
        • Для общественных зданий
        • Интегрированные
        • На батарейках
      • Трековые
        • Трековые
        • Светильники
        • Аксессуары трековых систем
      • Пылевлагозащищенные
      • Уличные
      • Архитектурные
      • Промышленные
      • Ландшафтные
      • Аварийные
      • Для растений (фито)
      • Декоративные
        • Декоративные
        • Светодиодные камины
        • Светодиодные свечи
      • Солнечные
    • Контроллеры, датчики, диммеры
      • Контроллеры, датчики, диммеры
      • Диммеры, выключатели
      • RGB Контроллеры для ленты 12/24
      • Контроллеры для ленты 220 V
      • Управление освещением и электроприборами
      • Датчики движения, фотореле
    • Прожекторы
      • Прожекторы
      • 10 Вт
      • 20 Вт
      • 30 Вт
      • 50 Вт
      • 70 Вт
      • 100 Вт
      • 150 Вт и более
    • Выключатели, розетки, удлинители
      • Выключатели, розетки, удлинители
      • Выключатели и розетки CGSS
        • Выключатели и розетки CGSS
        • Стеклянная коллекция «Эстетика»
        • Пластиковая коллекция «Практика»
      • Удлинители бытовые
      • Тройники, разветвители
      • Умные розетки
    • Фонари ручные, карманные, велосипедные
      • Фонари ручные, карманные, велосипедные
      • Аккумуляторные
      • Актив
      • Классические
      • Металлические
      • Налобные
      • Кемпинговые
      • Универсальные
      • Мини
    • Кабель, провод
      • Кабель, провод
      • Акустический
      • Силовой
      • Саморегулирующийся
    • Инструмент
      • Инструмент
      • Губцевый инструмент
        • Губцевый инструмент
        • Пассатижи и плоскогубцы
        • Бокорезы и кусачки
        • Круглогубцы, тонкогубцы и длинногубцы
        • Кабелерезы, тросорезы, кабельные ножницы
      • Электроизмерительные приборы
      • Оборудование для пайки
        • Оборудование для пайки
        • Паяльные станции
        • Импульсные паяльники
        • Паяльники с деревянной ручкой
        • Паяльник «Долговечное жало» REXANT
        • Паяльник на батарейках
        • Держатели «Третья рука»
        • Припой, флюс
      • Отвертки
      • Электрофены технические
      • Ящики, сумки, органайзеры для инструментов
        • Ящики, сумки, органайзеры для инструментов
        • Органайзеры для инструмента
        • Пластиковые ящики для инструмента
        • Сумки органайзеры для инструмента
    • Электротовары
      • Электротовары
      • Клеммники, разъёмы
      • Изоляционные материалы
    • Батарейки, аккумуляторы
      • Батарейки, аккумуляторы
      • Элементы питания (батарейки)
      • Внешние аккумуляторы
    • Товары по акции
    • Новогодние гирлянды
      • Новогодние гирлянды
      • Гирлянда «Нить»
      • Гирлянда «Сосульки»
      • Гирлянда «Сетка»
      • Гирлянда «Шарики»
      • Гирлянда «Занавес»
  • Акции
  • Услуги
    • Услуги
    • Монтаж светильников и светодиодной ленты
  • Справочная
    • Справочная
    • Блог
    • Вопрос-ответ
    • Производители
  • Контакты
  • Наши работы
    • Наши работы
    • Торговое оборудование
    • Подсветка жилых помещений

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?
Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).
Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).
Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:
aliexpress.com/snapshot/310648391.html
aliexpress.com/snapshot/310648393.html
Диоды вот эти:
aliexpress.com/snapshot/6008595825.html
Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.
У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).
Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.
Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:

ac85-265v» that everyday household appliances.»
load after 10-15v; can drive 3-4 3w led lamp beads series
600maА вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах .
Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).
Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!
На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).
Микросхема 3106 отслеживает выходные параметры преобразователя через обратную связь с вспомогательной обмотки трансформатора и управляет ключевым транзистором. Попытки найти информацию на эту МС в Интернете ничего не дала. RS1 RS2 — токозадающие резисторы. От их номинала зависит выходной ток драйвера. RS1 (1 Ом) – основной, при помощи RS2 (33 Ом) выходной ток подгоняется более точно.
Оказывается, и у этих драйверов можно регулировать выходной ток. Снял зависимость выходного тока от сопротивления RS (может кому пригодится).
Регулировать ток при помощи выносного переменного резистора не получится. Паразитные ёмкости и индуктивности никто не отменял.
А теперь на счёт применимости.
В этот светильник что только не вклеивал (был обзор). Теперь приклеил 1-Вт-ные светодиоды. К ним буду подключать обозреваемые драйверы, так нагляднее.
А вот так он светит.
Всего 12 светодиодов (6 пар). Для равномерного распределения света самое оптимальное количество. Для эксперимента тоже лучше не придумаешь.
Один из вариантов подключения к драйверу с балластом на конденсаторах.
С1=1,5мкФ+1,2мкФ=2,7мкФ. Чтобы посчитать мощность, необходимо посчитать ток по формуле (2).
I=(228В-36В)*2,7мкФ/3,18=163мА. Мощность считается по формуле из школьного учебника физики.
Р= 36В*0,163А=5,9Вт.
А теперь посмотрим, что показывают приборы.
Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.
У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.
Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.
Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.
Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.
Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Cодержание

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это – принцип ШИМ – широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги.

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А. Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.

Об авторе: Vamfaza

LED-источники должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать светодиодные источники освещения. Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

Мощный светодиод со стабилизатором

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

Устройство светодиода

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. LED-источники освещения – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей уличного освещения;
  • в быту;
  • для обустройства подсветки;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.

Светодиодные уличные фонари – мощные и экономичные

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Вся важная информация есть на корпусе устройства

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип устройства Технические характеристики Плюсы Минусы Сфера применения

Линейный

Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики

Импульсный

Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = PLED-источника × n, где P – это мощность драйвера; PLED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.

Бескорпусный драйвер

Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Способы соединения светодиодов

Диммируемые преобразователи тока для светодиодов

Диммирование – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для светодиодных светильников позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.

Диммирование светодиодов при помощи пульта ДУ

Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Как изготовить драйвер для светодиодов своими руками

Устройство можно сделать из любого ненужного зарядного устройства для телефона. Стоит внести лишь минимальные усовершенствования и микросхему можно подключать к светодиодам. Его достаточно для питания 3 элементов по 1 Вт. Для подключения более мощного источника можно использовать платы от люминесцентных ламп.

Важно! Во время работы необходимо соблюдать технику безопасности. Про прикосновении к оголенным частям возможен удар током как до 400 В.

Фото Этап сборки драйвера из зарядного устройства
Снять корпус с зарядного устройства.
При помощи паяльника убрать резистор, который ограничивает напряжение, подаваемое к телефону.
Установить на его место подстроечный резистор, пока его нужно выставить на 5 кОм.
Последовательным соединением припаять светодиоды на выходной канал устройства.
Убрать входные каналы паяльником, на их место припаять сетевой шнур для подключения к сети 220 В.
Проверить работоспособность схемы, установить регулятором на подстроечном резисторе нужное напряжение, чтобы светодиоды светили ярко, но не изменили цвет.

Пример схемы драйвера для светодиодов от сети 220 В

Драйверы для светодиодов: где купить и сколько стоят

Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже:

Модель Технические параметры Цена, руб.
  • Мощность: 18 Вт
  • Выходное напряжение: 12 В
  • Входное напряжение: 100÷240 В
190
драйвер DC12V
  • Мощность: 6 Вт,
  • Выходное напряжение: 45 В
  • Входное напряжение: 220 В
160
драйвер LB0138
  • Мощность: 21 Вт
  • Выходное напряжение: 25÷35 В
  • Входное напряжение: 200÷240 В
680
драйвер YW-83590
  • Мощность: 150 Вт
  • Входное напряжение 170÷260 В
  • Выходное напряжение: 12 В
730
драйвер LB009

Микросхема PT4115 стоит от 40 до 150 рублей за штуку. Стоимость более мощных элементов колеблется от 100 рублей до нескольких тысяч.

Драйверы – это незаменимые элементы для подключения светодиодов, без их использования невозможно обеспечить бесперебойную и долгую работу LED-источников. Поделитесь в комментариях вашим опытом использования и самостоятельной сборки стабилизаторов тока для светодиодов.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Теги статьи: Добавить тег

Сетевой драйвер мощного светодиода

Доровских Алексей Николаевич (dandiv2006)
Опубликовано 26.02.2013
Создано при помощи КотоРед.

Здравствуйте уважаемые коты. Хочу представить вам схему, которая может использоваться для питания мощных светодиодов. В данной статье постараюсь показать и описать схему, объяснить методику правильной настройки работы с использованием осциллографа.

Покупал себе вот такой светодиод. (На фото я уже прикрутил его к радиатору для охлаждения)

Такие светодиоды есть различной мощности. Данный экземпляр 10W. Рекомендуемый производителем ток 1 Ампер, падение напряжения на нем от 10 до 12 вольт. Поэтому будем собирать импульсный источник питания, рассчитанный на поддержание тока через светодиод в пределах 1 Ампер и напряжение 12 вольт.

Эта же схема успешно может работать и как зарядное устройство для небольших аккумуляторов (к примеру, таких, которые используются в UPS). О том, что нужно изменить в данной схеме для использования ее в качестве зарядного устройства в конце статьи.

Приступим к изучению схемы

Хотелось бы отметить, что эта схема (как и все обратноходовые блоки питания) не боится короткого замыкания на выходе. Ее можно использовать и как обычный блок питания, исключив их схемы шунт Ri, транзистор VT2, конденсатор C12 и резистор R12, поставив вместо шунта перемычку. И даже тогда схема не боится КЗ – все дело в том, что передача энергии в нагрузку происходит во время обратного хода (в это время силовой транзистор закрыт), а во время прямого хода (даже если на выходе короткое замыкание) ток через транзистор не превысит максимальный, так как микросхема KA3845 (UC3845…) следит за падением напряжения на истоковом резисторе ключа.

Принцип работы CC-CV (Constant current, constant voltage).

При включении в сеть ИИП (импульсный источник питания) с малой нагрузкой, напряжение на выходе будет равно 12 вольт (задается делителем на резисторах R10 и R11 в цепи управляемого стабилитрона VD6).

Ограничение выходного тока задается шунтом Ri. При превышении некоторого порога, падения напряжения на этом резисторе хватит для открытия транзистора VT2, который включен, как и TL431, в цепь оптопары PC817, при этом выходное напряжение уменьшается, а значит, уменьшается и ток. Таким образом, происходит стабилизация выходного тока. При сопротивлении резистора Ri 0,6 Ом выходной ток будет равен 1 амперу (на самом деле, возможно, потребуется подбор номинала, так как у деталей может быть отклонение от номинала).

И так вот она эта схема:

Транзистор VT2, на самом деле, не обязательно 2SC1815, просто такие очень часто используются в ATX блоках питания, а многие детали сняты именно с них.

Конденсатор C12 нужен для того, чтобы схема не реагировала на прикосновения к выходным проводам, этот номинал можно изменить – я подбирал минимальную емкость при которой данный эффект исчезает, можно использовать вплоть до 0.1мкФ, но желательно меньше.

Резистор R12 ограничивает ток базы транзистора VT2.

Приступим к изучению принципиальной схемы зарядного устройства.

По входу стоит предохранитель на 1 ампер (думаю, что его предназначение ясно), NTC резистор (для ограничения пускового тока, можно использовать любой с сопротивлением 5-10 Ом). При включении в сеть, пока заряжается конденсатор С1 после диодного моста VDS1, схема потребляет значительный ток, и чтобы его ограничить, нужен NTC резистор. Можно конечно поставить более мощный диодный мост, но это увеличивает габариты и стоимость. Диодный мост у меня RS206, опять же это не обязательно, можно применить любой на ток примерно 2А – ну чтоб с небольшим запасом.

Резистор R1 обеспечивает начальное напряжение питания микросхемы, после запуска она питается с дополнительной обмотки трансформатора. Смотрим на 4 и 8 вывод микросхемы – резистор R3 и конденсатор C5 задают частоту на выходе микросхемы (6 вывод) примерно 110 кГц, именно на нее рассчитываем трансформатор. Стабилитрон VD4 защищает нагрузку от перенапряжения при неисправности ОС (Обратной Связи).

В истоке силового транзистора VT1 стоит резистор R6 сопротивлением 2,2 Ома – о нем расскажу позже.

О цепочке RCD клампера (R7 C13 VD3) также расскажу попозже.

И теперь печатка.

Файл в формате программы Sprint Layout можно скачать в конце статьи.
Открываем нужный файл с помощью программы Sprint Layout 5.0, после открытия можно распечатать печатную плату для повторения конструкции. Маленькая подсказка: При наведении курсором мыши на детали всплывают их номиналы. Размер платы 70мм на 45мм.

Расчет трансформатора велся программой уважаемого Старичка (Starichok51), а именно Денисенко Владимира, его программы есть на форуме. Хочу поблагодарить Владимира за огромную помощь в написании статьи!
Ссылка на тему Программы расчета трансформаторов и дросселей
Для дальнейшей работы нам понадобится программа Flyback с первой страницы темы, поэтому скачиваем ее.
Скриншот расчета трансформатора

Трансформатор – сердечник EE19 (Такие сердечники во многих АТХ блоках имеются, нужно его разобрать и перемотать).

Методов для разбора трансформатора несколько:

Кипячение – опускаем трансформатор в чайник и кипятим, вытаскиваем, пробуем разобрать, если сердечник еще не расклеивается, то процедуру повторяем. Нужно добиться размягчения клея, которым склеены половинки сердечника. При расклеивании не спешим – если не поддается, то сильно ковырять не стоит, так как феррит очень хрупкий.

Замачивание – нужно опустить сердечник в емкость и залить ацетоном, желательно герметичную емкость, чтобы меньше запаха было. Остается ждать — лучше оставлять на ночь, чтобы точно расклеился.

Микроволновка – некоторые разбирают трансформатор, положив его в микроволновку и включив на несколько секунд для разогрева (при этом желательно, чтобы еще стакан с водой рядом был), потом вытаскивают и пробуют разобрать.

P/s метод разборки трансформатора с помощью микроволновки я бы не рекомендовал, есть возможность сжечь ее. Хотя такой метод тоже описывают в интернете и пишут, что проблем нет. Я же его тут указал, чтобы коллекция была полной.

Трансформатор разобрали, теперь нужно намотать под необходимые нужды. Для этого берем программу расчета трансформатора для обратноходового ИИП, называется Flyback – ссылку на тему, где можно скачать смотреть выше.

В программе нужно выбрать необходимый сердечник и указывать

минимальное и максимальное напряжение в сети.

Частота преобразования – я указал 110 кГц (задается резистором R3 и конденсатором С5), Отраженное напряжение — можно так и оставить 125 вольт

Максимальное допустимое напряжение на ключе – смотрим даташит на имеющийся транзистор, значение Vdss

Сопротивление канала Rds(on) — смотрим даташит на имеющийся транзистор, значение Rds(on)

Плотность тока – я поставил 5А/мм2 (это значение зависит от условий охлаждения и размеров сердечника. При естественном охлаждении следует выбирать 4-6А/мм2. Если есть искусственная вентиляция, то можно задавать выше, до 8-10А/мм2. Следует учитывать что для маленьких сердечников можно задавать плотность тока выше, а для больших – меньше. Зависит от условия охлаждения обмоток, в больших сердечниках условия охлаждения хуже, поэтому плотность тока нужно выбирать ниже).

Неразрывность тока – лучше задавать равное 0, это соответствует разрывному току.

Диаметр провода первичной обмотки – если поставить галочку “Использовать диаметры проводов”, то при расчете программа будет опираться на данное значение. Сначала эту галочку лучше не ставить, чтобы программа сама рекомендовала диаметр провода. А потом можно подобрать из имеющихся проводов подходящие диаметры взамен рекомендованных.

Вторичные обмотки

Указываем необходимое напряжение, ток, падение напряжение на диоде.

В моем случае:

выходная обмотка питания 12 вольт, 1 ампер, 0,8 вольт

обмотка питания микросхемы 15 вольт, 0,01ампер, 0,8 вольт

При нажатии кнопки Рассчитать программа выдает нам следующие данные:

Первичная обмотка — 136 витков проводом 0,18 мм одна жила,

Вторичная обмотка – 14 витков проводом 0,35 мм три жилы (мотается сразу тремя проводами указанного диаметра)

Обмотка питания микросхемы — 18 витков проводом 0,07 мм в одну жилу

Диаметр провода можно выбрать немного больше — главное, чтобы при намотке все обмотки поместились в окно сердечника. Программа показывает Коэффициент заполнения окна, при значении до 0,3 провод должен поместиться в окно, но все зависит от того, как будете мотать трансформатор. Витки нужно укладывать плотно, виток к витку. Если мотать не очень аккуратно, то провод может не поместиться, поэтому тут только тренировка…

Чтобы была как можно меньше индуктивность рассеяния, с которой потом придется бороться с помощью RCD клампера, мотать трансформатор нужно так: половина первички, вторичка, обмотка питания микросхемы, вторая половина первички. Не забываем про межслойную изоляцию. После намотки нужно выставить зазор сердечника (Если сердечник с зазором по центральному керну, то зазор нужен не менее 0,3 мм – в скриншоте указано, если без зазора в центральном керне, то нужно выставить зазор 0,15 мм по крайним). Самое идеальное решение при подборе зазора – измерять индуктивность первички, и зазором подогнать необходимую величину индуктивности. Не путаем начала и концы обмоток (отмечены точками), для этого нужно мотать все обмотки в одну сторону.

Конденсатор фильтра питания 22мкФ, рекомендованное значение программа расчета также выдает.

Резистор в истоке силового транзистора, по схеме 2,2 Ома – это соответствует току через транзистор 0,45А. Сопротивление резистора = 1 / Амплитуда тока транзистора, (амплитуду смотрим по программе расчета). Если нет подходящего номинала резистора (при условии что будете делать расчет под свои нужды), то можно взять чуть меньше, но сильно не занижаем – помним, что этот резистор ограничивает ток через ключ и его нельзя превышать.

Силовой транзистор VT1 –полевик 2N60, можно применить и другие подходящие по параметрам. Я снимал его также с блока АТХ (в дежурке стоят… иногда там используются биполярники – ищем даташит на имеющийся транзистор, чтобы не воткнуть нечаянно биполярник в эту схему)

Обратная связь – оптопара. У меня pc817 – думаю, найти такую нет проблем.

Выходной диод шотки или любой быстродействующий, рассчитанный на ток выше чем максимально потребляемый нагрузкой и обратным напряжением равным или выше чем Ud обрат. (смотрим в программе расчета). В данной схеме можно использовать что-нибудь типа MBR3100, MBR1660 и т.п. – смотреть, что есть в продаже или в наличии.

Вот мы и намотали и запаяли трансформатор, теперь возьмемся за RCD клампер.

В программе расчета из меню можно вызвать вспомогательную программу расчета RCD клампера.

или

Верхний рисунок в положении переключателя Амплитуда выброса, нижний рисунок в положении Емкость конденсатора.

Остановимся подробнее на полях программы.

Отраженное напряжение – берем из результатов расчета трансформатора

Амплитуда выброса – желаемое напряжение выброса от энергии, запасенной в индуктивности рассеяния первичной обмотки, над отраженным напряжением

С правой стороны можно поставить галочку для расчета емкости клампера по заданной амплитуде выброса либо расчет амплитуды выброса по заданной емкости. Амплитуду выброса можно выбирать 100-110 вольт.

Амплитуда тока – амплитуда тока в первичной обмотке, берем из результатов расчета трансформатора

Частота преобразования – лучше вводить реальную частоту преобразования, а не расчетную (при отсутствии возможности измерить частоту можно подставить расчетную, но тогда расчет может быть не совсем точный)

Индуктивность рассеяния – индуктивность рассеяния первичной обмотки, либо измеряем при закорачивании ВСЕХ вторичных обмоток, либо пользуемся предварительными расчетами по периодам свободных колебаний

Эквивалентная емкость — это сумма нескольких емкостей: выходная емкость ключа, емкость первичной обмотки, емкость монтажа, в общем все емкости, которые участвуют в колебательном процессе.

При нажатии кнопки Рассчитать, программа выдаст нам либо емкость конденсатора, сопротивление резистора и мощность рассеиваемую на нем, марку “медленного” диода и сопротивление резистора и мощность рассеиваемую на нем при использовании “быстрого” диода, либо те же данные, но с указанием в результатах амплитуды выброса (Зависит от положения переключателя)

Далее рассмотрим нижнюю часть подпрограммы расчета.

Расчет эквивалентной емкости и индуктивности рассеяния

Индуктивность L1 – полная индуктивность первичной обмотки трансформатора

Период колебаний по L1 – период свободных колебаний по полной индуктивности первичной обмотки после окончания передачи энергии. Эти свободные колебания можно увидеть только в режиме разрывного тока

Период колебаний по Ls — период свободных колебаний по индуктивности рассеяния первичной обмотки. Этот период следует измерять на том участке, где уже нет клампинга этих колебаний. (На осциллограмме покажу, что это значит)

При нажатии кнопки Рассчитать, программа выдаст нам Индуктивность рассеяния и Эквивалентную емкость. Если выбрать галочку автоперенос результатов в основной расчет, то эти значения автоматом подставятся в необходимые поля.

Важное замечание: Величины емкости и сопротивления, которые выдает подпрограмма расчета RCD клампера, могут немного отличаться от действительно необходимых величин для правильной настройки работы клампера. Емкость конденсатора программа рассчитывает довольно таки точно. Если нет необходимого номинала, то можно взять ближайший номинал из стандартного ряда, а вот с резистором все равно придется поработать.

Ну а теперь приступим к изучению осциллограмм, чтобы представлять, что мы должны видеть на приборе и знать, что означает каждая часть осциллограмм для правильной настройки ИИП.
Фото осциллограмм…
Сначала одно важное замечание: все измерения осциллографом проводить относительно плюса питания, чтобы пульсации напряжения на сетевом выпрямителе не размазывали картинку.

Чтобы правильно рассчитать и увидеть хорошую осциллограмму нам нужно измерить реальную частоту, на которой работает ИИП.

Вот что у нас получилось с реальной частотой:

На осциллографе положение переключателя 2мкс. В клетке 5 делений, значит одно деление 0,4мкс. Период колебаний почти 27 делений, итого 10,8 мкс. Частота в герцах равна единице, деленой на полученное значение в секундах.
10,8мкс/1 000 000 = 0,0000108 сек. Значит частота = 1/0,0000108 = примерно 92,6кГц

92,6кГц — запоминаем

Теперь нам еще нужно узнать Период колебаний по L1 – период свободных колебаний по полной индуктивности первичной обмотки. Для более точного измерения я переключил осциллограф в положение 1мкс_100v/дел и измеряем на стоке полевика.

Смотрим следующий рисунок

1,8мкс – запоминаем

Период колебаний по Ls — период свободных колебаний по индуктивности рассеяния. Для измерения этого периода пришлось еще растянуть шкалу, я переключил осциллограф в положение 0,2мкс_100v/дел и измерил этот период на стоке полевика.

0,28мкс – запоминаем

Вводим частоту и периоды колебаний в подпрограмму расчета RCD клампера. И видим, что нам предлагает программа. Конденсатор C13 нужен 463пФ — я поставил 470пФ, резистор R7 нужен 131кОм – у меня стоит 150кОм. Отличие настройки клампера от расчетов объясняется приближенностью расчетов. В первую очередь, приближенной оценкой мощности, возвращаемой через «медленный» диод.

Для общего понимания осциллограмм выкладываю картинки

на стоке полевого транзистора (осциллограф в режиме 5мкс 100V_дел)

на конденсаторе RCD клампера (осциллограф в режиме 5мкс 100V_дел)

На истоке (осциллограф в режиме 2мкс 1V_дел)

Общая картина видна, теперь для более точного измерения будем растягивать шкалу

Осциллограф в режиме 2мкс 100V_дел

Уровень отраженного напряжения

Выброс над отраженным напряжением

Уровень отраженного напряжения по верхним осциллограммам, снятых на стоке полевого транзистора, примерно 125 вольт. Выброс над отраженным примерно 100 вольт. При правильном подборе RCD клампера выброс над отраженным напряжением, снятым на стоке, и на клампере будет одинаков и уровень, до которого разряжается конденсатор (нижний рисунок) должен доходить до полки отраженного напряжения (смотрим осциллограмму выше – отметка уровень отраженного напряжения)

У нас это условие выполняется, значит, можно считать, что ИИП собран и настроен на оптимальный режим работы!

Ну и несколько фотографий собранной платы:

Путем расчета трансформатора и некоторых деталей данную схему можно применить и для других целей. А именно: можно использовать как маломощный блок питания или как зарядное устройство для небольших аккумуляторов с UPS.

В виду того, что вышла новая версия программы расчета обратноходовых источников питания flyback 7.0 у многих пользователей начались проблемы с расчетом RCD клампера. Причина одна — оставляют пустым поле остаток напряжения после выброса, чтобы таких вопросов не возникало прилагаю следующую осциллограмму

На ней я пометил на уже существующей осциллограмме уровень остаток напряжения после выброса. Осциллограф в режиме 2мкс 100V_дел — считаем: указанная линия примерно 145 вольт, уровень отраженного напряжения примерно 125 вольт, значит для того чтобы узнать остаток напряжения после выброса нужно от 145 вольт вычесть 125 вольт = 20 вольт, вот именно это значение и вводим в поле остаток напряжения после выброса.
А теперь смотрим, что получилось:
В программу расчета Flyback 7.0 я ввел те же значения, что и в младшей версии программы. По расчетам отличий нет (незначительные есть, но они никак не влияют в целом на конструкцию)

Теперь вводим все необходимые данные в расчет RCD клампера

что мы видим? А видим то, что номинал резистора клампера даже еще ближе к установленному мной в данной конструкции!
Хотелось бы еще раз сказать огромное Спасибо Владимиру за его программы!!!
Всем Спасибо и удачи в построении импульсных источников питания!

Продолжение следует (ждем подробную статью по сборке зарядного устройства)

Файлы:
01_pre.jpg Фото светодиода
21_pre.jpg фото 4
19_pre.jpg фото 1
20_pre.jpg фото 2
02_pre.jpg Схема
14_pre.jpg исток
15_pre.jpg клампер 2мкс 100V_дел
13_pre.jpg клампер
16_pre.jpg Уровень отраженного напряжения
08_pre.jpg измерение реальной частоты
05_pre.jpg Скриншот расчета
11_pre.jpg Период колебаний по Ls
10_pre.jpg Период колебаний по L1
08_pre.jpg измерение реальной частоты
12_pre.jpg сток полевого транзистора
17_pre.jpg Выброс над отраженным напряжением
18_pre.jpg выброс и разряд
04_pre.jpg Печатка
02_pre.jpg Схема
06_pre.jpg переключатель в положении Амплитуда выброса
07_pre.jpg переключатель в положении Емкость конденсатора
Печатная плата

Все вопросы в Форум.

Как вам эта статья?

Заработало ли это устройство у вас?

218 4 1
13 0 0

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *